Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38328244

RESUMO

Influenza A and B viruses overcome the host antiviral response to cause a contagious and often severe human respiratory disease. Here, integrative structural biology and biochemistry studies on non-structural protein 1 of influenza B virus (NS1B) reveal a previously unrecognized viral mechanism for innate immune evasion. Conserved basic groups of its C-terminal domain (NS1B-CTD) bind 5'triphosphorylated double-stranded RNA (5'-ppp-dsRNA), the primary pathogen-associated feature that activates the host retinoic acid-inducible gene I protein (RIG-I) to initiate interferon synthesis and the cellular antiviral response. Like RIG-I, NS1B-CTD preferentially binds blunt-end 5'ppp-dsRNA. NS1B-CTD also competes with RIG-I for binding 5'ppp-dsRNA, and thus suppresses activation of RIG-I's ATPase activity. Although the NS1B N-terminal domain also binds dsRNA, it utilizes a different binding mode and lacks 5'ppp-dsRNA end preferences. In cells infected with wild-type influenza B virus, RIG-I activation is inhibited. In contrast, RIG-I activation and the resulting phosphorylation of transcription factor IRF-3 are not inhibited in cells infected with a mutant virus encoding NS1B with a R208A substitution it its CTD that eliminates its 5'ppp-dsRNA binding activity. These results reveal a novel mechanism in which NS1B binds 5'ppp-dsRNA to inhibit the RIG-I antiviral response during influenza B virus infection, and open the door to new avenues for antiviral drug discovery.

2.
Nucleic Acids Res ; 52(1): 355-369, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38015453

RESUMO

The RIG-I family helicases, comprising RIG-I, MDA5 and LGP2, are cytoplasmic RNA sensors that trigger an antiviral immune response by specifically recognizing foreign RNAs. While LGP2 lacks the signaling domain necessary for immune activation, it plays a vital role in regulating the RIG-I/MDA5 signaling pathway. In this study, we investigate the mechanisms underlying this regulation by examining the oligomeric state, RNA binding specificity, and translocation activity of human LGP2 and the impact of ATPase activity. We show that LGP2, like RIG-I, prefers binding blunt-ended double-stranded (ds) RNAs over internal dsRNA regions or RNA overhangs and associates with blunt-ends faster than with overhangs. Unlike RIG-I, a 5'-triphosphate (5'ppp), Cap0, or Cap1 RNA-end does not influence LGP2's RNA binding affinity. LGP2 hydrolyzes ATP in the presence of RNA but at a 5-10 fold slower rate than RIG-I. Nevertheless, LGP2 uses its ATPase activity to translocate and displace biotin-streptavidin interactions. This activity is significantly hindered by a methylated RNA patch, particularly on the 3'-strand, suggesting a 3'-strand tracking mechanism like RIG-I. The preference of LGP2 for blunt-end RNA binding, its insensitivity to Cap0/Cap1 modification, and its translocation/protein displacement ability have substantial implications for how LGP2 regulates the RNA sensing process by MDA5/RIG-I.


Assuntos
RNA Helicases DEAD-box , RNA Helicases , Humanos , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo , RNA Helicases DEAD-box/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Helicase IFIH1 Induzida por Interferon/metabolismo , Ligação Proteica/fisiologia , Receptores Imunológicos/genética , RNA Helicases/metabolismo , RNA de Cadeia Dupla , RNA Viral/metabolismo
3.
Bio Protoc ; 13(23): e4892, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38094251

RESUMO

Human mitochondrial DNA (mtDNA) encodes several components of oxidative phosphorylation responsible for the bulk of cellular energy production. The mtDNA is transcribed by a dedicated human mitochondrial RNA polymerase (POLRMT) that is structurally distinct from its nuclear counterparts, instead closely resembling the single-subunit viral RNA polymerases (e.g., T7 RNA polymerase). The initiation of transcription by POLRMT is aided by two initiation factors: transcription factor A, mitochondrial (TFAM), and transcription factor B2, mitochondrial (TFB2M). Although many details of human mitochondrial transcription initiation have been elucidated with in vitro biochemical and structural studies, much remains to be addressed relating to the mechanism and regulation of transcription. Studies of such mechanisms require reliable, high-yield, and high-purity methods for protein production, and this protocol provides the level of detail and troubleshooting tips that are necessary for a novice to generate meaningful amounts of proteins for experimental work. The current protocol describes how to purify recombinant POLRMT, TFAM, and TFB2M from Escherichia coli using techniques such as affinity column chromatography (Ni2+ and heparin), how to remove the solubility tags with TEV protease and recover untagged proteins of interest, and how to overcome commonly encountered challenges in obtaining high yield of each protein. Key features • This protocol builds upon purification methods developed by Patel lab (Ramachandran et al., 2017) and others with greater detail than previously published works. • The protocol requires several days to complete as various steps are designed to be performed overnight. • The recombinantly purified proteins have been successfully used for in vitro transcription experiments, allowing for finer control of experimental components in a minimalistic system.

4.
J Am Chem Soc ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37917930

RESUMO

Strand exchange between homologous nucleic acid sequences is the basis for cellular DNA repair, recombination, and genome editing technologies. Specialized enzymes catalyze cellular strand exchange; however, the reaction occurs spontaneously when a single-stranded DNA toehold can dock the invader strand on the target DNA to initiate strand exchange through branch migration. Due to its precise response, the spontaneous toehold-mediated strand displacement (TMSD) reaction is widely employed in DNA nanotechnology. However, enzyme-free TMSD suffers from slow rates, resulting in slow response times. Here, we show that human mitochondrial DNA helicase Twinkle can accelerate TMSD up to 6000-fold. Mechanistic studies indicate that Twinkle accelerates TMSD by catalyzing the docking step, which typically limits spontaneous reactions. The catalysis occurs without ATP, and Twinkle-catalyzed TMSD rates remain sensitive to base-pair mismatches. The simple catalysis, tunability, and speed improvement of the catalyzed TMSD can be leveraged in nanotechnology, requiring sensitive detection and faster response times.

5.
Nature ; 622(7984): 872-879, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37821701

RESUMO

Transcription initiation is a key regulatory step in gene expression during which RNA polymerase (RNAP) initiates RNA synthesis de novo, and the synthesized RNA at a specific length triggers the transition to the elongation phase. Mitochondria recruit a single-subunit RNAP and one or two auxiliary factors to initiate transcription. Previous studies have revealed the molecular architectures of yeast1 and human2 mitochondrial RNAP initiation complexes (ICs). Here we provide a comprehensive, stepwise mechanism of transcription initiation by solving high-resolution cryogenic electron microscopy (cryo-EM) structures of yeast mitochondrial RNAP and the transcription factor Mtf1 catalysing two- to eight-nucleotide RNA synthesis at single-nucleotide addition steps. The growing RNA-DNA is accommodated in the polymerase cleft by template scrunching and non-template reorganization, creating stressed intermediates. During early initiation, non-template strand scrunching and unscrunching destabilize the short two- and three-nucleotide RNAs, triggering abortive synthesis. Subsequently, the non-template reorganizes into a base-stacked staircase-like structure supporting processive five- to eight-nucleotide RNA synthesis. The expanded non-template staircase and highly scrunched template in IC8 destabilize the promoter interactions with Mtf1 to facilitate initiation bubble collapse and promoter escape for the transition from initiation to the elongation complex (EC). The series of transcription initiation steps, each guided by the interplay of multiple structural components, reveal a finely tuned mechanism for potential regulatory control.


Assuntos
Mitocôndrias , Saccharomyces cerevisiae , Iniciação da Transcrição Genética , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/ultraestrutura , Mitocôndrias/enzimologia , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Nucleotídeos/metabolismo , RNA/biossíntese , RNA/ultraestrutura , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Microscopia Crioeletrônica , DNA/metabolismo , DNA/ultraestrutura
6.
Nucleic Acids Res ; 51(15): 8102-8114, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37326006

RESUMO

The innate immune receptor RIG-I recognizes 5'-triphosphate double-stranded RNAs (5' PPP dsRNA) as pathogenic RNAs. Such RNA-ends are present in viral genomes and replication intermediates, and they activate the RIG-I signaling pathway to produce a potent interferon response essential for viral clearance. Endogenous mRNAs cap the 5' PPP-end with m7G and methylate the 2'-O-ribose to evade RIG-I, preventing aberrant immune responses deleterious to the cell. Recent studies have identified RNAs in cells capped with metabolites such as NAD+, FAD and dephosphoCoA. Whether RIG-I recognizes these metabolite-capped RNAs has not been investigated. Here, we describe a strategy to make metabolite-capped RNAs free from 5' PPP dsRNA contamination, using in vitro transcription initiated with metabolites. Mechanistic studies show that metabolite-capped RNAs have a high affinity for RIG-I, stimulating the ATPase activity at comparable levels to 5' PPP dsRNA. Cellular signaling assays show that the metabolite-capped RNAs potently stimulate the innate antiviral immune response. This demonstrates that RIG-I can tolerate diphosphate-linked, capped RNAs with bulky groups at the 5' RNA end. This novel class of RNAs that stimulate RIG-I signaling may have cellular roles in activating the interferon response and may be exploited with proper functionalities for RIG-I-related RNA therapeutics.


Assuntos
RNA Helicases DEAD-box , RNA de Cadeia Dupla , Proteína DEAD-box 58/genética , RNA Helicases DEAD-box/metabolismo , Imunidade Inata , Interferons/genética , Ligantes , Capuzes de RNA , RNA Viral/genética , RNA Viral/metabolismo , Transdução de Sinais , Humanos
7.
J Biol Chem ; 299(1): 102797, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36528058

RESUMO

Twinkle is the ring-shaped replicative helicase within the human mitochondria with high homology to bacteriophage T7 gp4 helicase-primase. Unlike many orthologs of Twinkle, the N-terminal domain (NTD) of human Twinkle has lost its primase activity through evolutionarily acquired mutations. The NTD has no demonstrated activity thus far; its role has remained unclear. Here, we biochemically characterize the isolated NTD and C-terminal domain (CTD) with linker to decipher their contributions to full-length Twinkle activities. This novel CTD construct hydrolyzes ATP, has weak DNA unwinding activity, and assists DNA polymerase γ (Polγ)-catalyzed strand-displacement synthesis on short replication forks. However, CTD fails to promote multikilobase length product formation by Polγ in rolling-circle DNA synthesis. Thus, CTD retains all the motor functions but struggles to implement them for processive translocation. We show that NTD has DNA-binding activity, and its presence stabilizes Twinkle oligomerization. CTD oligomerizes on its own, but the loss of NTD results in heterogeneously sized oligomeric species. The CTD also exhibits weaker and salt-sensitive DNA binding compared with full-length Twinkle. Based on these results, we propose that NTD directly contributes to DNA binding and holds the DNA in place behind the central channel of the CTD like a "doorstop," preventing helicase slippages and sustaining processive unwinding. Consistent with this model, mitochondrial single-stranded DNA-binding protein (mtSSB) compensate for the NTD loss and partially restore kilobase length DNA synthesis by CTD and Polγ. The implications of our studies are foundational for understanding the mechanisms of disease-causing Twinkle mutants that lie in the NTD.


Assuntos
DNA Helicases , Proteínas Mitocondriais , Humanos , DNA/metabolismo , DNA Helicases/metabolismo , DNA Primase/genética , DNA Primase/metabolismo , Replicação do DNA , DNA Mitocondrial/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo
8.
Methods Enzymol ; 672: 75-102, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35934486

RESUMO

Genome replication is accomplished by highly regulated activities of enzymes in a multi-protein complex called the replisome. Two major enzymes, DNA polymerase and helicase, catalyze continuous DNA synthesis on the leading strand of the parental DNA duplex while the lagging strand is synthesized discontinuously. The helicase and DNA polymerase on their own are catalytically inefficient and weak motors for unwinding/replicating double-stranded DNA. However, when a helicase and DNA polymerase are functionally and physically coupled, they catalyze fast and highly processive leading strand DNA synthesis. DNA polymerase has a 3'-5' exonuclease activity, which removes nucleotides misincorporated in the nascent DNA. DNA synthesis kinetics, processivity, and accuracy are governed by the interplay of the helicase, DNA polymerase, and exonuclease activities within the replisome. This chapter describes quantitative biochemical and biophysical methods to study the coupling of these three critical activities during DNA replication. The methods include real-time quantitation of kinetics of DNA unwinding-synthesis by a coupled helicase-DNA polymerase complex, a 2-aminopurine fluorescence-based assay to map the precise positions of helicase and DNA polymerase with respect to the replication fork junction, and a radiometric assay to study the coupling of DNA polymerase, exonuclease, and helicase activities during processive leading strand DNA synthesis. These methods are presented here with bacteriophage T7 replication proteins as an example but can be applied to other systems with appropriate modifications.


Assuntos
DNA Polimerase Dirigida por DNA , Exonucleases , DNA , DNA Helicases/metabolismo , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Exonucleases/metabolismo
9.
EMBO J ; 41(10): e109782, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35437807

RESUMO

The innate immune receptor RIG-I provides a first line of defense against viral infections. Viral RNAs are recognized by RIG-I's C-terminal domain (CTD), but the RNA must engage the helicase domain to release the signaling CARD (Caspase Activation and Recruitment Domain) domains from their autoinhibitory CARD2:Hel2i interactions. Because the helicase itself lacks RNA specificity, mechanisms to proofread RNAs entering the helicase domain must exist. Although such mechanisms would be crucial in preventing aberrant immune responses by non-specific RNAs, they remain largely uncharacterized to date. This study reveals a previously unknown proofreading mechanism through which RIG-I ensures that the helicase engages RNAs explicitly recognized by the CTD. A crucial part of this mechanism involves the intrinsically disordered CARDs-Helicase Linker (CHL), which connects the CARDs to the helicase subdomain Hel1. CHL uses its negatively charged regions to antagonize incoming RNAs electrostatically. In addition to this RNA gating function, CHL is essential for stabilization of the CARD2:Hel2i interface. Overall, we uncover that the CHL and CARD2:Hel2i interface work together to establish a tunable gating mechanism that allows CTD-chosen RNAs to bind the helicase domain, while at the same time blocking non-specific RNAs. These findings also indicate that CHL could represent a novel target for RIG-I-based therapeutics.


Assuntos
RNA Helicases DEAD-box , RNA de Cadeia Dupla , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , DNA Helicases/metabolismo , Imunidade Inata , Estrutura Terciária de Proteína , RNA Viral/genética
10.
STAR Protoc ; 2(2): 100431, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33870232

RESUMO

In yeast mitochondria, transcription initiation requires assembly of mitochondrial RNA polymerase and transcription initiation factor MTF1 at the DNA promoter initiation site. This protocol describes the purification of the component proteins and assembly of partially melted and fully melted initiation complex states. Both states co-exist in equilibrium in the same sample as seen by cryoelectron microscopy (cryo-EM) and allow elucidation of MTF1's structural roles in controlling the transition into elongation. We further outline how analysis of the complex by light scattering, thermal shift assay, and ultrafiltration assay exhibits reproducible results. For complete details on the use and execution of this protocol, please refer to De Wijngaert et al. (2021).


Assuntos
Microscopia Crioeletrônica/métodos , RNA Polimerases Dirigidas por DNA , Proteínas Mitocondriais , Proteínas de Saccharomyces cerevisiae , Fatores de Transcrição , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/ultraestrutura , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/ultraestrutura , Ribossomos Mitocondriais , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Fatores de Transcrição/ultraestrutura
11.
Mol Cell ; 81(2): 268-280.e5, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33278362

RESUMO

Mitochondrial RNA polymerase (mtRNAP) is crucial in cellular energy production, yet understanding of mitochondrial DNA transcription initiation lags that of bacterial and nuclear DNA transcription. We report structures of two transcription initiation intermediate states of yeast mtRNAP that explain promoter melting, template alignment, DNA scrunching, abortive synthesis, and transition into elongation. In the partially melted initiation complex (PmIC), transcription factor MTF1 makes base-specific interactions with flipped non-template (NT) nucleotides "AAGT" at -4 to -1 positions of the DNA promoter. In the initiation complex (IC), the template in the expanded 7-mer bubble positions the RNA and NTP analog UTPαS, while NT scrunches into an NT loop. The scrunched NT loop is stabilized by the centrally positioned MTF1 C-tail. The IC and PmIC states coexist in solution, revealing a dynamic equilibrium between two functional states. Frequent scrunching/unscruching transitions and the imminent steric clashes of the inflating NT loop and growing RNA:DNA with the C-tail explain abortive synthesis and transition into elongation.


Assuntos
DNA Mitocondrial/genética , RNA Polimerases Dirigidas por DNA/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , RNA Mitocondrial/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Sítios de Ligação , Microscopia Crioeletrônica , DNA Mitocondrial/química , DNA Mitocondrial/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Motivos de Nucleotídeos , Regiões Promotoras Genéticas , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , RNA Mitocondrial/química , RNA Mitocondrial/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Termodinâmica , Elongação da Transcrição Genética , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Iniciação da Transcrição Genética
12.
J Biol Chem ; 295(52): 18406-18425, 2020 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-33127643

RESUMO

Mitochondria are specialized compartments that produce requisite ATP to fuel cellular functions and serve as centers of metabolite processing, cellular signaling, and apoptosis. To accomplish these roles, mitochondria rely on the genetic information in their small genome (mitochondrial DNA) and the nucleus. A growing appreciation for mitochondria's role in a myriad of human diseases, including inherited genetic disorders, degenerative diseases, inflammation, and cancer, has fueled the study of biochemical mechanisms that control mitochondrial function. The mitochondrial transcriptional machinery is different from nuclear machinery. The in vitro re-constituted transcriptional complexes of Saccharomyces cerevisiae (yeast) and humans, aided with high-resolution structures and biochemical characterizations, have provided a deeper understanding of the mechanism and regulation of mitochondrial DNA transcription. In this review, we will discuss recent advances in the structure and mechanism of mitochondrial transcription initiation. We will follow up with recent discoveries and formative findings regarding the regulatory events that control mitochondrial DNA transcription, focusing on those involved in cross-talk between the mitochondria and nucleus.


Assuntos
DNA Mitocondrial/química , DNA Mitocondrial/genética , Regulação da Expressão Gênica , Proteínas Mitocondriais/metabolismo , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição , Transcrição Gênica , DNA Mitocondrial/metabolismo , Humanos , Proteínas Mitocondriais/genética , Fatores de Transcrição/genética
13.
Nat Commun ; 11(1): 4281, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32855416

RESUMO

Controlling efficiency and fidelity in the early stage of mitochondrial DNA transcription is crucial for regulating cellular energy metabolism. Conformational transitions of the transcription initiation complex must be central for such control, but how the conformational dynamics progress throughout transcription initiation remains unknown. Here, we use single-molecule fluorescence resonance energy transfer techniques to examine the conformational dynamics of the transcriptional system of yeast mitochondria with single-base resolution. We show that the yeast mitochondrial transcriptional complex dynamically transitions among closed, open, and scrunched states throughout the initiation stage. Then abruptly at position +8, the dynamic states of initiation make a sharp irreversible transition to an unbent conformation with associated promoter release. Remarkably, stalled initiation complexes remain in dynamic scrunching and unscrunching states without dissociating the RNA transcript, implying the existence of backtracking transitions with possible regulatory roles. The dynamic landscape of transcription initiation suggests a kinetically driven regulation of mitochondrial transcription.


Assuntos
Mitocôndrias/genética , Saccharomyces cerevisiae/genética , Iniciação da Transcrição Genética , Trifosfato de Adenosina , DNA Fúngico/genética , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Transferência Ressonante de Energia de Fluorescência , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , RNA Fúngico/genética , RNA Fúngico/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Imagem Individual de Molécula/métodos , Elongação da Transcrição Genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Biochem Biophys Res Commun ; 528(3): 580-585, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32505352

RESUMO

Mammalian cells contain genetic information in two compartments, the nucleus and the mitochondria. Mitochondrial gene expression must be coordinated with nuclear gene expression to respond to cellular energetic needs. To gain insight into the coordination between the nucleus and mitochondria, there is a need to understand the regulation of transcription of mitochondrial DNA (mtDNA). Reversible protein post-translational modifications of the mtDNA transcriptional machinery may be one way to control mtDNA transcription. Here we focus on a member of the mtDNA transcription initiation complex, mitochondrial transcription factor B2 (TFB2M). TFB2M melts mtDNA at the promoter to allow the RNA polymerase (POLRMT) to access the DNA template and initiate transcription. Three phosphorylation sites have been previously identified on TFB2M by mass spectrometry: threonine 184, serine 197, and threonine 313. Phosphomimetics were established at these positions. Proteins were purified and analyzed for their ability to bind mtDNA and initiate transcription in vitro. Our results indicate phosphorylation at threonine 184 and threonine 313 impairs promoter binding and prevents transcription. These findings provide a potential regulatory mechanism of mtDNA transcription and help clarify the importance of protein post-translational modifications in mitochondrial function.


Assuntos
DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sequência de Bases , Sítios de Ligação/genética , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Humanos , Técnicas In Vitro , Cinética , Metiltransferases/química , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Modelos Moleculares , Mimetismo Molecular/genética , Fosforilação , Regiões Promotoras Genéticas , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Fatores de Transcrição/química , Sítio de Iniciação de Transcrição , Transcrição Gênica
15.
J Biol Chem ; 295(20): 6823-6830, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32241911

RESUMO

The structurally homologous Mtf1 and TFB2M proteins serve as transcription initiation factors of mitochondrial RNA polymerases in Saccharomyces cerevisiae and humans, respectively. These transcription factors directly interact with the nontemplate strand of the transcription bubble to drive promoter melting. Given the key roles of Mtf1 and TFB2M in promoter-specific transcription initiation, it can be expected that the DNA binding activity of the mitochondrial transcription factors is regulated to prevent DNA binding at inappropriate times. However, little information is available on how mitochondrial DNA transcription is regulated. While studying C-terminal (C-tail) deletion mutants of Mtf1 and TFB2M, we stumbled upon a finding that suggested that the flexible C-tail region of these factors autoregulates their DNA binding activity. Quantitative DNA binding studies with fluorescence anisotropy-based titrations revealed that Mtf1 with an intact C-tail has no affinity for DNA but deletion of the C-tail greatly increases Mtf1's DNA binding affinity. Similar observations were made with TFB2M, although autoinhibition by the C-tail of TFB2M was not as complete as in Mtf1. Analysis of available TFB2M structures disclosed that the C-tail engages in intramolecular interactions with the DNA binding groove in the free factor, which, we propose, inhibits its DNA binding activity. Further experiments showed that RNA polymerase relieves this autoinhibition by interacting with the C-tail and engaging it in complex formation. In conclusion, our biochemical and structural analyses reveal autoinhibitory and activation mechanisms of mitochondrial transcription factors that regulate their DNA binding activities and aid in specific assembly of transcription initiation complexes.


Assuntos
DNA Fúngico/metabolismo , DNA Mitocondrial/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , DNA Fúngico/genética , DNA Mitocondrial/genética , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas Mitocondriais/genética , Domínios Proteicos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
16.
EMBO J ; 39(6): e103367, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32037587

RESUMO

The proofreading exonuclease activity of replicative DNA polymerase excises misincorporated nucleotides during DNA synthesis, but these events are rare. Therefore, we were surprised to find that T7 replisome excised nearly 7% of correctly incorporated nucleotides during leading and lagging strand syntheses. Similar observations with two other DNA polymerases establish its generality. We show that excessive excision of correctly incorporated nucleotides is not due to events such as processive degradation of nascent DNA or spontaneous partitioning of primer-end to the exonuclease site as a "cost of proofreading". Instead, we show that replication hurdles, including secondary structures in template, slowed helicase, or uncoupled helicase-polymerase, increase DNA reannealing and polymerase backtracking, and generate frayed primer-ends that are shuttled to the exonuclease site and excised efficiently. Our studies indicate that active-site shuttling occurs at a high frequency, and we propose that it serves as a proofreading mechanism to protect primer-ends from mutagenic extensions.


Assuntos
Bacteriófago T7/genética , DNA Primase/metabolismo , Reparo do DNA/genética , Replicação do DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , DNA/biossíntese , Bacteriófago T7/enzimologia , Domínio Catalítico , DNA Primase/genética , Primers do DNA/genética , DNA Polimerase Dirigida por DNA/genética , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Mutação , Nucleotídeos/genética
17.
Nucleic Acids Res ; 48(5): 2604-2620, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-31980825

RESUMO

Mitochondrial RNA polymerases depend on initiation factors, such as TFB2M in humans and Mtf1 in yeast Saccharomyces cerevisiae, for promoter-specific transcription. These factors drive the melting of promoter DNA, but how they support RNA priming and growth was not understood. We show that the flexible C-terminal tails of Mtf1 and TFB2M play a crucial role in RNA priming by aiding template strand alignment in the active site for high-affinity binding of the initiating nucleotides. Using single-molecule fluorescence approaches, we show that the Mtf1 C-tail promotes RNA growth during initiation by stabilizing the scrunched DNA conformation. Additionally, due to its location in the path of the nascent RNA, the C-tail of Mtf1 serves as a sensor of the RNA-DNA hybrid length. Initially, steric clashes of the Mtf1 C-tail with short RNA-DNA hybrids cause abortive synthesis but clashes with longer RNA-DNA trigger conformational changes for the timely release of the promoter DNA to commence the transition into elongation. The remarkable similarities in the functions of the C-tail and σ3.2 finger of the bacterial factor suggest mechanistic convergence of a flexible element in the transcription initiation factor that engages the DNA template for RNA priming and growth and disengages when needed to generate the elongation complex.


Assuntos
DNA Fúngico/genética , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Moldes Genéticos , Elongação da Transcrição Genética , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Biocatálise , DNA Fúngico/química , Cadeias de Markov , Metiltransferases/química , Metiltransferases/metabolismo , Conformação de Ácido Nucleico , Nucleotídeos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Conformação Proteica , RNA Fúngico/biossíntese , Deleção de Sequência , Relação Estrutura-Atividade , Iniciação da Transcrição Genética
18.
Methods ; 159-160: 90-95, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30707952

RESUMO

During transcription along nucleosomal DNA, RNA polymerase II (Pol II) pauses at multiple positions and induces formation of multiple intermediates that aid in maintaining proper chromatin structure. To describe the kinetics of this multiple-step reaction, we utilized a computational model-based approach and KinTek Explorer software to analyze the time courses. Here we describe the stepwise protocol for analysis of the kinetics of transcription through a nucleosome that provides the rate constants for each step of this complex process. We also present an example where this time-resolved approach was applied to study the mechanism of histone chaperone FACT action during Pol II transcription through a single nucleosome by comparing the rate constants derived in the presence or in the absence of FACT.


Assuntos
Montagem e Desmontagem da Cromatina , Biologia Computacional , Nucleossomos/metabolismo , RNA Polimerase II/metabolismo , Transcrição Gênica , Humanos , Cinética , Modelos Biológicos
19.
Nat Commun ; 9(1): 5366, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30560918

RESUMO

Retinoic acid inducible gene-I (RIG-I) ensures immune surveillance of viral RNAs bearing a 5'-triphosphate (5'ppp) moiety. Mutations in RIG-I (C268F and E373A) lead to impaired ATPase activity, thereby driving hyperactive signaling associated with autoimmune diseases. Here we report, using hydrogen/deuterium exchange, mechanistic models for dysregulated RIG-I proofreading that ultimately result in the improper recognition of cellular RNAs bearing 7-methylguanosine and N1-2'-O-methylation (Cap1) on the 5' end. Cap1-RNA compromises its ability to stabilize RIG-I helicase and blunts caspase activation and recruitment domains (CARD) partial opening by threefold. RIG-I H830A mutation restores Cap1-helicase engagement as well as CARDs partial opening event to a level comparable to that of 5'ppp. However, E373A RIG-I locks the receptor in an ATP-bound state, resulting in enhanced Cap1-helicase engagement and a sequential CARDs stimulation. C268F mutation renders a more tethered ring architecture and results in constitutive CARDs signaling in an ATP-independent manner.


Assuntos
Autoimunidade/genética , Proteína DEAD-box 58/genética , Imunidade Inata/genética , Capuzes de RNA/imunologia , RNA de Cadeia Dupla/imunologia , Adenosina Trifosfatases/metabolismo , Domínio de Ativação e Recrutamento de Caspases/imunologia , Proteína DEAD-box 58/química , Proteína DEAD-box 58/imunologia , Proteína DEAD-box 58/metabolismo , Medição da Troca de Deutério/métodos , Mutação com Ganho de Função , Guanosina/análogos & derivados , Guanosina/química , Guanosina/imunologia , Guanosina/metabolismo , Helicase IFIH1 Induzida por Interferon/imunologia , Helicase IFIH1 Induzida por Interferon/metabolismo , Espectrometria de Massas/métodos , Metilação , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ligação Proteica/genética , Ligação Proteica/imunologia , Capuzes de RNA/química , Capuzes de RNA/metabolismo , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/metabolismo , RNA Viral/imunologia , Receptores Imunológicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia
20.
Elife ; 72018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30526856

RESUMO

Bacterial and eukaryotic nuclear RNA polymerases (RNAPs) cap RNA with the oxidized and reduced forms of the metabolic effector nicotinamide adenine dinucleotide, NAD+ and NADH, using NAD+ and NADH as non-canonical initiating nucleotides for transcription initiation. Here, we show that mitochondrial RNAPs (mtRNAPs) cap RNA with NAD+ and NADH, and do so more efficiently than nuclear RNAPs. Direct quantitation of NAD+- and NADH-capped RNA demonstrates remarkably high levels of capping in vivo: up to ~60% NAD+ and NADH capping of yeast mitochondrial transcripts, and up to ~15% NAD+ capping of human mitochondrial transcripts. The capping efficiency is determined by promoter sequence at, and upstream of, the transcription start site and, in yeast and human cells, by intracellular NAD+ and NADH levels. Our findings indicate mtRNAPs serve as both sensors and actuators in coupling cellular metabolism to mitochondrial transcriptional outputs, sensing NAD+ and NADH levels and adjusting transcriptional outputs accordingly.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Capuzes de RNA/genética , RNA Mitocondrial/genética , Transcrição Gênica , Citoplasma/genética , Citoplasma/metabolismo , Humanos , Mitocôndrias/genética , NAD/genética , Oxirredução , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética , Sítio de Iniciação de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA